Engineering nanomaterial surfaces for biomedical applications.
نویسندگان
چکیده
Nanomaterials, possessing unique physical and chemical properties, have attracted much interest and generated wide varieties of applications. Recent investigations of functionalized nanomaterials have expanded into the biological area, providing a versatile platform in biomedical applications such as biomolecular sensing, biological imaging, drug delivery and disease therapy. Bio-functions and bio-compatibility of nanomaterials are realized by introducing synthetic ligands or natural biomolecules onto nanomaterials, and combining ligand-receptor biological interactions with intrinsic nanomaterial properties. Common strategies of engineering nanomaterial surfaces involve physisorption or chemisorption of desired ligands. We developed a photochemically initiated surface coupling chemistry, bringing versatility and simplicity to nanomaterial functionalization. The method was applied to attach underivatized carbohydrates efficiently on gold and iron oxide nanoparticles, and the resulting glyconanoparticles were successfully used as a sensitive biosensing system probing specific interactions between carbohydrates and proteins as well as bacteria.
منابع مشابه
Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating
We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submill...
متن کاملBiomedical applications of nanodiamond (Review).
The interest in nanodiamond applications in biology and medicine is on the rise over recent years. This is due to the unique combination of properties that nanodiamond provides. Small size (∼5 nm), low cost, scalable production, negligible toxicity, chemical inertness of diamond core and rich chemistry of nanodiamond surface, as well as bright and robust fluorescence resistant to photobleaching...
متن کاملNanotechnology: Interdisciplinary science of applications
Nanotechnology is the study of particle sizes between 1 and 100 nanometers at least at one dimension. Particle size reduced to nanometer length scale exhibit more surface area to volume size ratio and showing unusual properties makes them enable for systematic applications in engineering, biomedical, agricultural and allied sectors. Nanomaterial can create from bottom up or top down approaches ...
متن کاملFabrication, Characterization and Cytotoxicity of Spherical-Shaped Conjugated Gold-Cockle Shell Derived Calcium Carbonate Nanoparticles for Biomedical Applications
The evolution of nanomaterial in science has brought about a growing increase in nanotechnology, biomedicine, and engineering fields. This study was aimed at fabrication and characterization of conjugated gold-cockle shell-derived calcium carbonate nanoparticles (Au-CSCaCO3NPs) for biomedical application. The synthetic technique employed used gold nanoparticle citrate reduction method and a sim...
متن کاملFabrication and Cytocompatibility of In Situ Crosslinked Carbon Nanomaterial Films
Assembly of carbon nanomaterials into two-dimensional (2D) coatings and films that harness their unique physiochemical properties may lead to high impact energy capture/storage, sensors, and biomedical applications. For potential biomedical applications, the suitability of current techniques such as chemical vapor deposition, spray and dip coating, and vacuum filtration, employed to fabricate m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental biology and medicine
دوره 234 10 شماره
صفحات -
تاریخ انتشار 2009